Frontiers in Manufacturing Engineering (FME) DOI: http://doi.org/10.26480/fme.01.2017.01.04 ISSN: 2329-8227 (Print) ISSN: 2329-8219 (Online) CODEN: FMERA8 # APPLICATION OF ADAPTIVE FUZZY SLIDING MODE CONTROL TO ALTERNATING CURRENT SERVOMOTOR SYSTEM Tongbin Deng*, Yuanlong Hou College of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China *Corresponding Author E-mail: 0, u is control the input function, $\theta(t)$ is the system output function signal function, d(t) into the external interference. Figure 1: Servo motor fuzzy block diagram of control system. Servo motor fuzzy sliding mode control system structure diagram as shown in Figure 1. The definition of track error: $$e(t) = \theta(t) - \theta_c(t) \tag{7}$$ Type: $\theta_{C}(t)$ as a function of the actual output signal detection. The definition of integral sliding mode surface: $$s(t) = e(t) + k_1 e(t) + k_2 \int e(t) dt$$ Type: k_1 and k_2 for non zero is constant. If the sliding mode control is an ideal state, then s(t) = s(t) = 0. That is: $$e(t) + k_1 e(t) + k_2 e(t) = 0$$ (9) Through the determination of k1 and k2, the tracking error e(t) will be near zero Assume that f, g and d(t) is known, according to the formula of $6 \sim 9$, the controller can obtain ideal $$u^{*}(t) = g(\theta, t)^{-1} [-f(\theta, t) - d(t) + \ddot{\theta}_{c}(t) - k_{1}\dot{e} - k_{2}e]$$ (10) By type 8: $$\dot{s}(t) = \ddot{e}(t) + k_1 \dot{e}(t) + k_2 e(t) = g(\theta, t) [u_{fz} + u_{vs} - u^*(t)]$$ (11) In order to promote the status of $\mathit{S}(t)$ and α approaches zero, consider the following Lyapunov function: $$V_1[s(t), \alpha] = \frac{1}{2}s^2(t) + \frac{g(\theta, t)}{2\beta_1}\alpha^T \alpha$$ In order to make $V_1[s(t), \alpha] \leq 0$, adopts the adaptive function and the switching control function: $$\begin{cases} \dot{\tilde{\alpha}} = \dot{\hat{\alpha}} = -\beta_1 s(t) \xi \\ u_{vs} = -E(t) \operatorname{sgn}[s(t)] \end{cases}$$ (12) Type: $sgn(\cdot)$ for the sign function. In order to alleviate the requirement on the bound of approximation error bound estimation, servo motor adaptive fuzzy sliding mode control system design with, as shown in Figure 2. **Figure 2:** With adaptive servo motor bounded estimation of the fuzzy sliding mode control system structure diagram. Use $\hat{E(t)}$ instead of E(t) , then the type 12 variable for: $$u = -\hat{E}(t)\operatorname{sgn}[s(t)] \tag{13}$$ Type: E(t) estimates for gain switching function. The definition of the estimation error: $$E(t) = \hat{E}(t) - E \tag{14}$$ In order to make the states of s(t), α and E(t) tends to zero, the Lyapunov function is defined as: $$V(t) = V_1(t) + \frac{g(\theta, t)}{2\beta_2} \tilde{E}^2$$ $$= \frac{1}{2} s^2(t) + \frac{g(\theta, t)}{2\beta_1} \alpha^T \alpha + \frac{g(\theta, t)}{2\beta_2} \tilde{E}^2$$ (15) Type: β and β for a positive constant. Then: $$\dot{V}(t) = \dot{V}_{1}(t) + \frac{g(\theta, t)}{\beta_{2}} \tilde{E}\dot{\tilde{E}}$$ $$= g(\theta, t)\tilde{\alpha}^{T} \left[s(t)\xi + \frac{1}{\beta_{1}}\dot{\tilde{\alpha}} \right] + s(t)g(\theta, t)(u_{vs} - \varepsilon) + \frac{g(\theta, t)}{\beta_{2}} \tilde{E}\dot{\tilde{E}}$$ $$= -E(t) \left| s(t) \right| g(\theta, t) - \varepsilon s(t)g(\theta, t) + \frac{g(\theta, t)}{\beta_{2}} \left[\hat{E}(t) - E \right]\dot{\tilde{E}}(t)$$ (16) In order to make the $V(t) \le 0$, define the adaptive law: $$\hat{E}(t) = \beta_2 \ s(t) \tag{17}$$ Then type 17 variables for: $$\dot{V}(t) = -\hat{E}(t)|s(t)|g(\theta,t) - \varepsilon s(t)g(\theta,t) + [\hat{E}(t) - E]|s(t)|g(\theta,t) = -\varepsilon s(t)g(\theta,t) - E|s(t)|g(\theta,t) \leq |\varepsilon|s(t)g(\theta,t) - E|s(t)|g(\theta,t) = -(E - |\varepsilon|)s(t)g(\theta,t) \leq 0$$ (18) #### 3.2 The Realization of Adaptive Fuzzy Sliding Mode Controller We can know from the analysis section, the adaptive fuzzy controller with fuzzy rules first function on the sliding surface of s(t) fuzzy processing, and then in the use of fuzzy input using Lyapunov stable adaptive laws satisfying, the ultimate realization of the adaptive fuzzy control. At the same time, in compensation for adaptive fuzzy output, using the adaptive sliding mode switched linear control, the final form of time-varying nonlinear system adaptive to the control of the fuzzy sliding mode controller. ### 4. SIMULATION AND ANALYSIS Parameters of the servo motor is taken as: Inductance $L_d=18.75m$, $L_q=18.75mH$, Resistance $R=12\Omega$, Quality M=24k, The coefficient of friction $B=0.2N\cdot s/m$, Magnetic pole distance $\tau=35mm$, Flux value $\psi=0.286Wb$, The target input step signal $V_{ref}=1rad/s$. Adaptive fuzzy sliding mode linear motor control system simulation results are as follows: Figure 3 is the unit step response curve of the order of the controller output; Figure 4 for the system position tracking curve; to the superiority of the fuzzy sliding mode adaptive control algorithm to verify the proposed, at the same time with the classic PID control comparison, select $K_P\!=\!50, K_i\!=\!200, K_d\!=\!0.5$, the results as shown in figure. Figure 5 is a PID position tracking curve; error map Figure 6 is the comparison of two algorithms. We can be seen from Figure 4, the proposed adaptive fuzzy sliding mode control of the output result is obviously better than the classic PID control, faster response, no overshoot, steady state error is zero, reach the target position is faster than the PID control. Figure 3: Controller output step response curve. **Figure 4:** The system position tracking curve. Figure 5: PID position tracking curve. Figure 6: Compare the error map. From Figures 4, 5, and 6, it can be seen in the presence of system uncertainties, the traditional PID control tracking performance declination, and chattering phenomenon, and even causes the system output response shock. Fuzzy sliding mode control not only has the stable tracking performance of adaptive is proposed in this paper, and the transient performance is satisfactory. #### 5. CONCLUSION In this paper, the boundary estimation with adaptive fuzzy sliding mode control is applied to the servo motor position control system, successfully design and application of adaptive technology in the fuzzy sliding mode controller is stable among the. The adaptive law of Lyapunov stability theory can automatically adjust the fuzzy rules, so as to ensure the stability of the system, at the same time using adaptive sliding mode switching linear control to compensate for the adaptive fuzzy output, can be time-varying and nonlinear system control. Compared with the traditional PID algorithm, the adaptive fuzzy sliding mode control with fast stability, in position output accuracy higher, more satisfied precision positioning of high pressure heater deceleration linear motor transport work platform requirements. According to the simulation results, the fuzzy sliding mode control algorithm has good control characteristic of adaptive is proposed in this paper, to improve the output precision of the position control system of permanent magnet synchronous motor, obtain satisfactory tracking response. #### REFERENCES - [1] Shu, Z.B. 2006. The design of AC servo control system, Beijing: Tsinghua University press. - [2] Choi, B.J., Kwak, S.W., Kim, B.K. 1999. Design of a single-input fuzzy logic controller and its properties, Fuzzy Sets and Systems, 106, (3), 299- - [3] Palm, R. 1994. Robust control by fuzzy sliding mode, Automatica, 30, 9, 1429-1437. - [4] Yu, X., Man, Z., Wu, B. 1998. Design of fuzzy sliding-mode control systems, Fuzzy Sets and Systems, 95, (3), 295-306. - [5] Gao, W.D., Fang, Y.M. 2009. Applying the adaptive fuzzy sliding mode control, Micro Motor Servo Motor System, (11), 32-36. - [6] Liu, Z.G., Wang, J.Z., Zhao, J.B. 2009. Neural net-work adaptive sliding mode control for permanent magnet synchronous motor, Electric Machines and Control, 13, 2, 290-295. - [7] Dong, K. 2010. Research on permanent magnet linear synchronous motor adaptive variable structure position controller, Journal of Shenyang University, 22, (3), 4-7. - [8] Baker, D. 2013. 2 phase hybrid stepping motors. Stepper Motors and Their Control, IEE Colloquium, 25, (1), 21-23. - [9] Wale, J.D., Pollock, C. 2011. Hybrid stepping motors and drives, Power Engineering, 15, 1, 5-12. - [10] Crivii, M., Trifa, V., Broscoi, A. 2012. Analysis of a Transistor Controlled Stepping Motor. Koninklijke Vlaamse Ingenieursvereniging, 12, (9), 285-288. - [11] Adams, K.G., VanReenen, M. 2013. A Low-Cost Stepper Motor Positioning System with Minor Closed-Loop Control. The International Journal of Advanced Manufacturing Technology, (5), 191-197. - [12] Chung, S.C.Y., Lin, C.L. 2011. A Transformed Lure Problem for Sliding Mode Control and Chattering Reduction. IEEE Transaction on Automatic Control, 44, (4), 563-568. - [13] Chen, Y., Zhou, T.Y., Zhang, Q., Chen, X.Y., Chen, S.H. 2012. A study on the friction of a self-correction ultrasonic stepping motor. Ultrasonics, 25, (3), 667-671. - [14] Clarkson, P.J., Acarnley, P.P. 2012. Closed-loop Control of Stepping Motor Systems. IEEE Trans On Industry Applications, 24, (4), 685-691. - [15] Li, Q.L., Zhou, M.T. 2012. Research on Dependable Distributed Systems for Smart Grid. Journal of Software, 76. - [16] Sakamoto, M., Tozune., A. 2006. High torque 2 phase Hybrid Type stepping motor. Electical Machings and systems, 1, (16), 630-634